首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99606篇
  免费   5377篇
  国内免费   4937篇
电工技术   4782篇
技术理论   5篇
综合类   10004篇
化学工业   13556篇
金属工艺   6024篇
机械仪表   3524篇
建筑科学   5948篇
矿业工程   1786篇
能源动力   3030篇
轻工业   6517篇
水利工程   2358篇
石油天然气   5214篇
武器工业   794篇
无线电   7864篇
一般工业技术   14934篇
冶金工业   2826篇
原子能技术   2346篇
自动化技术   18408篇
  2024年   92篇
  2023年   382篇
  2022年   648篇
  2021年   885篇
  2020年   1318篇
  2019年   1233篇
  2018年   1326篇
  2017年   1315篇
  2016年   1877篇
  2015年   2578篇
  2014年   4655篇
  2013年   5342篇
  2012年   4777篇
  2011年   5525篇
  2010年   4556篇
  2009年   5966篇
  2008年   5849篇
  2007年   6367篇
  2006年   5835篇
  2005年   4880篇
  2004年   4220篇
  2003年   4086篇
  2002年   4096篇
  2001年   3105篇
  2000年   3411篇
  1999年   3115篇
  1998年   2612篇
  1997年   2445篇
  1996年   2603篇
  1995年   2743篇
  1994年   2479篇
  1993年   1523篇
  1992年   1544篇
  1991年   1050篇
  1990年   770篇
  1989年   697篇
  1988年   649篇
  1987年   381篇
  1986年   231篇
  1985年   374篇
  1984年   415篇
  1983年   433篇
  1982年   328篇
  1981年   406篇
  1980年   275篇
  1979年   120篇
  1978年   112篇
  1977年   69篇
  1976年   41篇
  1975年   55篇
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
991.
"卓越计划"是教育部贯彻教育规划纲要精神启动的一项重大改革计划,以培养创新能力强、适应经济社会发展需要的高质量各类型工程技术人才为目标。本文以教育部试点专业为基础,按照化工卓越工程师培养的目标要求,建立以培养学生工程实践能力为目标的培养方案,以工程教育理念为核心,课程优化整合、教学改革为重点,采取走出去、请进来等多种形式实施"卓越计划",取得了显著效果。  相似文献   
992.
The reduced graphene oxide (RGO)/NiFe2O4 composite was synthesized by a facile one-pot hydrothermal route, which avoided the usage of chemical reducing agent. The reduction of graphene oxide (GO) and the crystallization of NiFe2O4 crystals happened in a one-step hydrothermal process. The morphology, microstructure and magnetic properties of the composite were detected by means of XRD, XPS, TEM, EDX, TG-DSC and VSM. The maximum RL of the RGO/NiFe2O4 composite is −39.7 dB at 9.2 GHz with the thickness of 3.0 mm, and the absorption bandwidth with the RL below −10 dB is up to 5.0 GHz (from 12.7 to 17.7 GHz) with a thickness of 1.9 mm. The introduction of RGO signally enhanced microwave absorption performance of the NiFe2O4 NPs. It is believed that such composite will be applied widely in microwave absorbing area.  相似文献   
993.
Dense silicon carbide (SiC) ceramics were prepared with 0, 10, 30 or 50 wt% WC particles by hot pressing powder mixtures of SiC, WC and oxide additives at 1800 °C for 1 h under a pressure of 40 MPa in an Ar atmosphere. Effects of alumina or SiC erodent particles and the WC content on the erosion performance of sintered SiC–WC composites were assessed. Microstructures of the sintered composites consisted of WC particles distributed in the equi-axed grain structure of SiC. Fracture surfaces showed a mixed mode of fracture, with a large extent of transgranular fracture observed in SiC ceramics prepared with 30 wt% WC. Crack bridging by WC enhanced toughening of the SiC ceramics. A maximum fracture toughness of 6.7 MPa*m1/2 was observed for the SiC ceramics with 50 wt% WC, whereas a high hardness of 26 GPa was obtained for the SiC ceramics with 30 wt% WC. When eroded at normal incidence, two orders of magnitude less erosion occurred when SiC–WC composites were eroded by alumina particles than that eroded by SiC particles. The erosion rate of the composites increased with increasing angle of SiC particle impingement from 30° to 90°, and decreased with WC reinforcement up to 30 wt%. A minimum erosion wear rate of 6.6 mm3/kg was obtained for SiC–30 wt% WC composites. Effects of mechanical properties and microstructure on erosion of the sintered SiC–WC composites are discussed, and the dominant wear mechanisms are also elucidated.  相似文献   
994.
Subsolidus pyrochlores with the proposed formula, Bi3+(5/2)xMg2−xNb3−(3/2)xO14−x (0.14≤x≤0.22) were successfully synthesised at the firing temperature of 1025 °C using conventional solid-state reaction. The excess Bi3+ charge was offset by removal of relative proportion of Mg2+ and Nb5+ together with creation of oxygen non-stoichiometry in order to preserve electroneutrality of the system. These samples were crystallised in cubic structure with space group of Fd3m, No. 227 and their refined lattice parameters were in the range of 10.5706 (3)–10.5797 (7) Å. The surface morphologies of the samples as confirmed by scanning electron microscopy analysis were of irregular shaped grains while their crystallite sizes of ~30–85 nm were calculated using the Scherrer equation and the Williamson–Hall method. No thermal event was discernable indicating these pyrochlores were thermally stable within a studied temperature range of ~30–1000 °C. The recorded dielectric constants of Bi3+(5/2)xMg2−xNb3−(3/2)xO14−x (0.14≤x≤0.22) subsolidus pyrochlores were generally above ~160 and their dielectric losses were in the order of 10−4–10−3 at the frequency of 1 MHz and temperature of ~30 °C. Meanwhile, these ceramic samples also exhibited negative temperature coefficient of relative permittivity between −528 and −742 ppm/°C in the temperature range of ~30–300 °C.  相似文献   
995.
Lead free piezoelectric ceramics (1−x)BNLT−xBZT with x=0.00, 0.06, 0.09 and 0.12 were prepared using a two-step mixed oxide method. Dielectric, ferroelectric and piezoelectric properties of the ceramics were improved by the addition of the BZT. XRD results show tetragonal symmetry structure of the BNLT–BZT ceramics. It was found that the tetragonality increases with increasing BZT content. The optimum composition is x=0.09, where the maximum values of the piezoelectric constant d33 (~126 pC/N) and dielectric constant (~2400) were obtained at room temperature. This BNLT–BZT system can be a promising candidate for lead-free piezoelectric ceramics.  相似文献   
996.
Camphor sulfonic acid (CSA) doped PANi–SnO2 hybrid nanocomposites were synthesized by solid-state synthesis route with varying amounts (10–50%) of CSA. X-ray diffraction studies have proven the successful incorporation of CSA into the polyaniline–SnO2 hybrid nanocomposites and the results are also supported by microstructural analysis. UV–visible and Fourier infrared spectroscopy studies have provided insight into the electronic interaction between the CSA, polyaniline, and SnO2. The room temperature dc electrical conductivity of CSA-doped PANi–SnO2 hybrid nanocomposite films were observed to depend on the amount of CSA doping and the morphology.  相似文献   
997.
A study of microstructural evolution, mechanical and thermo-mechanical properties of MgO–C refractories, based on graphite oxide nanosheets (GONs), carbon nanotubes (CNTs) and carbon black (CB), was carried out by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS), three-point bending and thermal shock tests. Meanwhile, these results were compared to the conventional MgO–C refractory containing 10 wt% flaky graphite prepared under the same conditions. The results showed that higher cold modulus of rupture was obtained for the composition containing GONs, and the composition containing CNTs exhibited larger displacement after coking at 1000 °C and 1400 °C. Also, the addition of nanocarbons led to an improvement of the thermal shock resistance; in particular, both compositions containing CNTs and CB had higher residual strength ratio, approaching the thermal shock resistance of the reference composition containing 10 wt% flaky graphite, as it was associated with the presence of nanocarbons and in-situ formation of ceramic phases in the matrix.  相似文献   
998.
Li/Ta/Sb co-doped lead-free (K0.4425Na0.52Li0.0375)(Nb0.93−xTaxSb0.07)O3 (abbreviated KNLNSTx) piezoelectric ceramics, with Ta-doping ratio of x ranging from 0.0275 to 0.0675, were synthesized using the conventional solid-state reaction method at the sintering temperature of 1130 °C. The effects of Ta content on the microstructure, dielectric properties, and phase transition behavior of the prepared ceramics were systematically investigated. The X-ray diffraction results show that all KNLNSTx ceramics formed a secondary phase, which is assigned to the tetragonal tungsten-bronze type (TTB) structure phase, and showed a phase transition from an orthorhombic symmetry to a tetragonal symmetry across a composition region of 0.0375<x<0.0475. The grain shape and size that correspond to the phase structure transformations can be clearly observed in the scanning electron microscopy images. As x increased to 0.0475, the KNLNST0.0475 ceramics changed from orthorhombic to tetragonal structure and showed excellent piezoelectric properties of d33=313 pC/N, kp=47%, and εr=1825. By contrast, samples of x=0.0375 with orthorhombic symmetry exhibited poor piezoelectric properties, with d33=200 pC/N and εr=1015. These results indicate that phase structure is vital in the piezoelectric properties of KNN lead-free ceramics.  相似文献   
999.
The research was carried out to develop geopolymers mortars and concrete from fly ash and bottom ash and compare the characteristics deriving from either of these products. The mortars were produced by mixing the ashes with sodium silicate and sodium hydroxide as activator solution. After curing and drying, the bulk density, apparent density and porosity, of geopolymer samples were evaluated. The microstructure, phase composition and thermal behavior of geopolymer samples were characterized by scanning electron microscopy, XRD and TGA-DTA analysis respectively. FTIR analysis revealed higher degree of reaction in bottom ash based geopolymer. Mechanical characterization shows, geopolymer processed from fly ash having a compressive strength 61.4 MPa and Young's modulus of 2.9 GPa, whereas bottom ash geopolymer shows a compressive strength up to 55.2 MPa and Young's modulus of 2.8 GPa. The mechanical characterization depicts that bottom ash geopolymers are almost equally viable as fly ash geopolymer. Thermal conductivity analysis reveals that fly ash geopolymer shows lower thermal conductivity of 0.58 W/mK compared to bottom ash geopolymer 0.85 W/mK.  相似文献   
1000.
0.25 wt% CuO-doped (Li,K,Na)(Nb,Ta)O3–AgSbO3 lead-free piezoceramics with pure perovskite structure were successfully prepared at a sintering temperature below 1000 °C. The sintering temperature of KNN-based piezoceramics was effectively reduced by about 100 °C due to the enhanced densification process induced by the addition of CuO. Besides, the acceptable sintering temperature window was broadened by the addition of CuO. It is found that the CuO-doped samples show slightly higher tetragonal–orthorhombic phase transition point (TTO) but a lower Curie point (Tc), compared to undoped ones. The KNN-based piezoceramics became “hard” as CuO was added, supported by an increase of Qm. Fairly good electrical properties of d33*=383 pm/V, εr=860, Qm=188 and Tc=215 °C could be obtained in dense CuO-modified KNN-based piezoceramics sintered at 970 °C, demonstrating promising potential in practical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号